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Abstract. Development of the advanced computational software, including pack-
ages for symbolic computations, created new possibilities for solving the initial value
problems for ordinary differential equations. The specific methods, that could be con-
sidered only theoretically without the possibility of symbolic computations, became
particularly important. One of such methods is the method based on one of the fun-
damental theorems in mathematical analysis, known in the professional literature as
the Taylor formula [?]grzy. Idea of this approach is very simple, but its application
requires the calculation of the higher order derivatives of the discussed function which
could cause the problems in times when the technique of symbolic computations with
the use of digital machines was not yet available. These problems however disappear
when we have such computer techniques at our disposal. Obviously, there exist a num-
ber of methods suitable for solving problems of the considered kind, like, for example,
the whole group of Runge-Kutty methods [6, 7, 8, 9], or the, less known, Adomian
decomposition method [1, 4]. In this paper we compare the effectiveness of the inves-
tigated method with the effectiveness of the sixth order Runge-Kutty method and the
numerical method implemented in Mathematica software [2].

Keywords: Taylor transformation, Runge-Kutty method, ordinary differential equa-
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1. Theoretical grounds

We consider the problem described by the differential equation

y′(x) = f(x, y(x)) (1)
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Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland,
e-mail: {radoslaw.grzymkowski, edyta.hetmaniok, mariusz.pleszczynski}@polsl.pl
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and initial condition
y(x0) = y0, (2)

where the variable x belongs to interval 〈x0, x0 + δ〉 and the functions y(x) and
f(x, y(x)) are of class C1〈x0, x0+δ〉 and Cn〈x0, x0+δ〉×〈y0−α, y0+α〉, respectively, for
x0, y0, δ and α ∈ R (C1 denotes the class of continuous functions with the continuous
first derivatives and Cn is the class of continuous functions with all the n−order
partial derivatives continuous).

In view of the taken assumptions, from the Taylor formula we have

f(x, y(x)) =

n−1
∑

k=0

Fk(x0, y(x0))

k!
(x− x0)

k+

+
Fn(x0 + θ(x − x0), y(x0 + θ(x− x0)))

n!
(x− x0)

n,

(3)

where θ ∈ (0, 1) and the functions Fk, k = 0, 1, . . . , n, are described by relations

F0(x, y(x)) = f(x, y(x)),

Fk(x, y(x)) =

[

d

dx
Fk−1(x, y(x))

]

y′=f(x,y(x))

, k = 1, 2, 3, . . . , n,
(4)

so we have

F1(x, y(x)) =

[

d

dx
F0(x, y(x))

]

y′(x)=f(x,y(x))

=

=

[

∂F0(x, y(x))

∂x
+

∂F0(x, y(x))

∂y
y′(x)

]

y′(x)=f(x,y(x))

=

=
∂f(x, y(x))

∂x
+

∂f(x, y(x))

∂y
f(x, y(x)),

F2(x, y(x)) =

[

d

dx
F1(x, y(x))

]

y′(x)=f(x,y(x))

=

=

[

d

dx

(

∂f(x, y(x))

∂x
+

∂f(x, y(x))

∂y
f(x, y(x))

)]

y′(x)=f(x,y(x))

=

=
∂2f(x, y(x))

∂x2
+

∂2f(x, y(x))

∂x∂y
f(x, y(x))+

+

(

∂2f(x, y(x))

∂y∂x
+

∂2f(x, y(x))

∂y2
f(x, y(x))

)

f(x, y(x))+

+
∂f(x, y(x))

∂y

(

∂f(x, y(x))

∂x
+

∂f(x, y(x))

∂y
f(x, y(x))

)

and so on.
Although the presented calculations do not look inviting, especially for the large

values of n, in real, when we may operate with a tool for symbolic computations, like
for example the computational platform Mathematica 8, determination of the values
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of functions Fk, k = 0, 1, . . . , n, is very simple. We may use for this purpose Program 1,
the source code of which is as follows

(* Program 1 *)

Program1[f_,x0_,y0_,n_]:=Module[{ty,tpf},

tpf=Table[f[x,y[x]],{n}];

Do[tpf[[i]]=D[tpf[[i-1]],x];

tpf[[i]]=tpf[[i]]/.{y’[x]->tpf[[1]]},{i,2,n}];

tpf=tpf/.{y[x]->y0,x->x0};

Print[Grid[Transpose[Join[{{"n",Subscript[F, "n"]}},

Table[{i,tpf[[i]]},{i,n}]]],

Dividers->{{False,True},{False,True,False}},

Dividers->Center]]

];

The above program, for the given function f(x, y) and condition y(x0) = y0, deter-
mines the values of functions Fk, k = 0, 1, . . . , n which is illustrated by Example 1.

Example 1.1. For function f(x, y) = xy, condition y(1) = 1 and n = 12, referring
to Program 1 by using the instructions

f[x_,y_]:=x^y;

Program1[f,1,1,12]

we obtain the following values of functions Fk, k = 0, 1, . . . , 12:

k 1 2 3 4 5 6 7 8 9 10 11 12

Fk 1 1 2 6 22 110 596 4144 29932 265620 2405656 25932016

Continuing our considerations we observe that from (1) and (2) the following rela-
tion results

y′(x) =

n−1
∑

k=0

Fk(x0, y0)

k!
(x− x0)

k+

+
Fn(x0 + θ(x− x0), y(x0 + θ(x − x0)))

n!
(x− x0)

n.

(5)

Now, if we divide the interval 〈x0, x0 + δ〉 into m equal parts, that is we execute
its discretization according to formula

xi = x0 + hi, i = 0, 1, , . . . ,m, (6)

where h = δ
m
, then by integrating both sides of relation (5) in the subinterval 〈x0, x1〉

of interval 〈x0, x0 + δ〉 we get

∫ x1

x0

y′(t)dt =
n−1
∑

k=0

Fk(x0, y0)

k!

x1
∫

x0

(t− x0)
kdt+

+

∫ x1

x0

Fn(x0 + θ(t− x0), y(x0 + θ(t− x0)))

n!
(t− x0)

ndt,

(7)
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and it means that (y1 = y(x1)):

y1 = y0+

n−1
∑

k=0

Fk(x0, y0)

(k + 1)!
hk+1 +

∫ x1

x0

Fn(x0 + θ(t− x0), y(x0 + θ(t− x0)))

n!
(t−x0)

ndt.

(8)
Since we know, from the assumption, that function f and its partial derivatives are

the continuous functions in the closed region under consideration, thus the functions
Fn are bounded, that is

∀n ∈ N ∃Mn ∈ R
+ ∀x ∈ 〈x0, x0 + δ〉 : |Fn| ≤ Mn,

and it means that
∣

∣

∣

∣

∣

y1 − y0 −

n−1
∑

k=0

Fk(x0, y0)

(k + 1)!
hk+1

∣

∣

∣

∣

∣

≤
Mnh

n+1

(n+ 1)!
. (9)

From relation (9) it results immediately that we can determine the approximate

value y1 of function y(x) with precision ∆1 = Mnh
n+1

(n+1)! . We have

y1 = y0 +
n−1
∑

k=0

Fk(x0, y0)

(k + 1)!
hk+1. (10)

Repeating the procedure leading to formula (10) for each of subintervals 〈xi, xi+1〉,
i = 0, 1, . . . ,m− 1, of interval 〈x0, x0 + δ〉, we receive

yi+1 = yi +
n−1
∑

k=0

Fk(xi, yi)

(k + 1)!
hk+1, i = 0, 1, . . . ,m− 1, (11)

where yi, i = 1, . . . ,m, are the approximate values of function y(x) at the points xi,
i = 1, . . . ,m, and these values are determined with the error not exceeding ∆i =
iMnh

n+1

(n+1)! , i = 1, . . . ,m. Number n, deciding on the exactness, can be treated as the

order of presented method.

2. Examples

To demonstrate the usefulness of discussed method, we present now few examples
in which we will solve the problems described by conditions (1) and (2) and for which
we will know the analytical solutions (solutions possible to be found in Mathematica

software as well as the solutions not possible to be found in that way). Solutions
obtained with the aid of presented method will be compared with the exact solutions
and with the approximate solutions determined by using the classical sixth order
Runge-Kutty method or the method available in Mathematica software (executed by
using the command NDSolve).
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2.1. Example 1

Let us consider the equation y′ = (x− y)x− y, for x ∈ [0, 2], with initial condition
y(0) = 1. The analytical solution of such formulated problem is given by function

y = x−1+2e−
1
2
x(2+x). Dividing the interval [0, 2] into m = 20 equal parts and taking

six terms (n = 5) in sum (11) we obtained the results presented in Figure 1. In the left
figure there are displayed the solutions: the exact solution (solid line) and the approx-
imate solutions obtained by using the sixth order Runge-Kutty method (squares), the
numerical method from Mathematica software (diamonds) and the examined method
(stars). Right figure presents the comparison of absolute errors ∆ received by using
all of these methods (with similar notation).
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Fig. 1. Solutions: exact one (solid line) and approximate ones from the sixth order Runge-Kutty
method (�), Mathematica (♦) and the examined method (⋆) (left figure) together with their
absolute errors (right figure)

Obviously, by increasing the values of parameters m or n the method should give
better results. We show these trends in Figure 2, where the left figure presents the
absolute errors of results obtained for increased m and not changed n, in the right
figure – inversely – we increased n not changing m.
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Fig. 2. Absolute errors of results for m = 30 and n = 5 (left figure) and for m = 20 and n = 7 (right
figure)

As we can see, by increasing the dense of discretization as well as by increasing the
order ofvexamined method we get very quickly much better reconstruction of exact
solution than the reconstruction obtained by using the Runge-Kutty method or the
method implemented in Mathematica software.
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2.2. Example 2

We examine now the equation y′ = cos 2x − 2y − 1, for x ∈ [0, 2π], with initial
condition y(0) = −1. The discussed problem possesses the following analytical solu-
tion: y = 1

4

(

cos 2x+ sin 2x− 2− 3e−2x
)

. We divide the interval [0, 2π] into m = 50
equal parts and we take n = 6 terms in sum (11). The obtained results are displayed
in Figure 3, where the left figure presents all four solutions (the exact one and the
approximate ones obtained from the Runge-Kutty method, the Mathematica numer-
ical method and the investigated method) and the right figure shows the respective
absolute errors ∆.
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Fig. 3. Solutions: exact one (solid line) and approximate ones from the sixth order Runge-Kutty
method (�), Mathematica (♦) and the examined method (⋆) (left figure) together with their

absolute errors (right figure)

Since the errors received by applying the Runge-Kutty method are significantly
bigger than the other errors, in the next figure we compare only the absolute errors
obtained by solving the problem with the aid of Mathematica numerical method and
the discussed method, first for the same values of n and m as previously (left figure)
and next for the value of n increased by one (right figure).

Presented example indicates again the advantage of described method.
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Fig. 4. Absolute errors of results obtained by using the Mathematica numerical method (♦) and the
examined method (⋆) for m = 50 and n = 6 (left figure) and for m = 50 and n = 7 (right

figure)



A novel algorithm for solving the ordinary differential equations 109

2.3. Example 3

Let us consider the equation y′ = 1
2 sin 2x − cosx (ln(x + y)− y − x) − 1, for x ∈

[0, 8], with initial condition y(0) = 1. The analytical solution of the problem is of the
form y = esin x − x and it cannot be determined by Mathematica software. Dividing
the interval [0, 8] into m = 40 equal parts and taking n = 6 terms in the proper sum
we get the results presented in Figure 5. As previously, the left figure includes all the
solutions and the right figure shows the comparison of the received absolute errors.
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Fig. 5. Solutions: exact one (solid line) and approximate ones from the sixth order Runge-Kutty
method (�), Mathematica (♦) and the examined method (⋆) (left figure) together with their
absolute errors (right figure)

We can observe that for such selected parameters all the methods give comparable
results. And, similarly as in the previous cases, we show now that the increase of the
discretization dense or the increase of the method order improves the results. This
time the errors obtained by applying the method build in Mathematica are clearly
bigger that the other errors, therefore in the next figure we compare only the absolute
errors received by using the Runge-Kutty method and the discussed method, first for
the increased value of m (and not changed n – left figure) and next for the increased
value of n (and not changed m – right figure).
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Fig. 6. Absolute errors of results obtained by using the Runge-Kutty method (�) and the examined
method (⋆) for m = 80 and n = 6 (left figure) and for m = 40 and n = 7 (right figure)
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3. Directions for future research

The works on generalizing this method for the systems of ordinary differential
equations are already in progress and the first obtained results are very promising.
As a confirmation of this statement let us present the example of applying the gen-
eralization of discussed method for the system of two ordinary differential equations
(notations for parameters are analogical as in the previous sections). Theoretical in-
troduction for this example can be found in [5], therefore we decided to omit it here.

We consider the system of equations

y′ = y + z − sinx+ 2(1− x), z′ = 2− (x− 2)2 − y,

for x ∈ [0, 3], with conditions y(0) = 0, z(0) = 1. The analytical solution of this
problem is of the form

y = sinx+ x(2 − x), z = cosx+ x(x− 2).

Dividing interval [0, 3] intom = 10 equal parts and including six terms (n = 5) in sums
analogical to the one defined in (10), we obtained the results presented in Figures 7–
9. The first figure shows the solutions: the exact solution (solid lien), the solution
received with the aid of the sixth order Runge-Kutty method (squares), the solution
obtained by using the numerical method from Mathematica software (diamonds) and
finally the solution given by the examined method (stars) for function y(x) – left figure
and for function z(x) – right figure. In Figure 8 there is displayedthe comparison of
absolute errors∆ of the respective approximate solutions (notations and arrangement
of the plots are analogical as in the previous sections).
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Fig. 7. Solutions: exact one (solid line) and approximate ones from the sixth order Runge-Kutty
method (�), Mathematica (♦) and the examined method (⋆) for function y(x) (left figure)
and z(x) (right figure)

Since the errors resulting from the application of Runge-Kutty method are signif-
icantly higher than the errors from the other methods, we present in Figure 9 the
comparison of errors obtained only from these others methods (excluding the Runge-
Kutty method).

Obviously, the examined method should give better results by increasing parameter
m, as well as n, in formula (11). Let us show this in the next figures, the first one
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demonstrates the situation with bigger m and not changed n, the second one – with
the bigger n and not changed m.
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Fig. 8. Absolute errors of results for m = 10 and n = 5 for function y(x) (left figure) and z(x) (right
figure)
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Fig. 9. Absolute errors of results obtained by using the Mathematica numerical method (♦) and the
examined method (⋆) for m = 10 and n = 5 for function y(x) (left figure) and z(x) (right
figure)
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Fig. 10. Absolute errors of results obtained by using the Mathematica numerical method (♦) and the
examined method (⋆) for m = 15 and n = 5 for function y(x) (left figure) and z(x) (right
figure)

We observe that in both cases, that is by increasing the dense of discretization as
well as by increasing the order of proposed method, we obtain very quickly the exact
solution reconstruction of much better quality than the reconstruction obtained by
using the Runge-Kutty method or the method implemented in Mathematica software.
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Fig. 11. Absolute errors of results obtained by using the Mathematica numerical method (♦) and the
examined method (⋆) for m = 10 and n = 7 for function y(x) (left figure) and z(x) (right
figure)

4. Summary

Presented examples, as well as the other numerous experiments not included in
this paper with regard to its limited length, indicate that the discussed method is
a very good tool for solving the Cauchy problem described by means of conditions (1)
and (2). Although the idea of this approach was known for some time, the method was
not developed because of the lack of possibility to determine effectively the derivatives.
Only the availability of the computer symbolic computations enabled to use efficiently
the proposed procedure. Presented examples revealed not only the usefulness of the
discussed method, but also its advantage in comparison with the classical sixth order
Runge-Kutty method (and, in consequence, the most commonly used fourth order
Runge-Kutty method) and the internal method NDSolve from the Mathematica soft-
ware.
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